The first application of the luminescence surface exposure dating method on active fault scarps in the Western Anatolia extensional province: the Manisa Fault as an example


Creative Commons License

SOFTA M., ŞAHİNER E., SÖZBİLİR H., Spencer J. Q., UTKU M., Büyüktopçu M. F.

Turkish Journal of Earth Sciences, cilt.32, sa.2, ss.163-180, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 2
  • Basım Tarihi: 2023
  • Doi Numarası: 10.55730/1300-0985.1836
  • Dergi Adı: Turkish Journal of Earth Sciences
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Geobase, INSPEC, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.163-180
  • Anahtar Kelimeler: earthquakes, Manisa Fault, OSL surface dating, paleoseismology
  • Ankara Üniversitesi Adresli: Evet

Özet

While there has been significant research on the dating of paleoearthquakes using methods such as surface cosmogenic dating, and trench-based luminescence or radiocarbon dating, this paper focuses on implementing an alternative surface dating method using a fault scarp-based optically stimulated luminescence (OSL) dating approach. Hence for the first time, we investigated the Pleistocene to Holocene earthquake cycle of the Manisa Fault, one of the dip-slip active faults of the Western Anatolia extensional province, utilizing novel OSL surface exposure techniques. In this technique, OSL bleaching profiles on the fault surface are directly related to the exposure of the fresh fault scarps that are produced by earthquakes. The results indicate that the Manisa Fault is responsible for at least six surface rupturing earthquakes since the Holocene, occurring at 154 ± 22 year (E6: LSD3), 416 ± 48 year (E5: LSD4), 1103 ± 82 year (E4: LSD5), 2067 ± 138 year (E3: LSD6), 5376 ± 48 year (E2: LSD7), and 6432 ± 218 year (E1: LSD8). Our results of the first use of this novel method on the Manisa Fault are in agreement with prior cosmogenic dating of fault scarps and trench-based paleoseismological chronological data, and we conclude that the OSL surface chronology is a promising alternative for fault scarp dating of paleoearthquakes.